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Abstract. A detailed presentation of the recently introduced integration-free method, with 
applications to determine the energy levels of the generalised quantum anharmonic oscil- 
lators, are given. Numerical calculations are realised for the quartic and the sextic oscil- 
lators. Energy eigenvalues obtained for the ground state as well as for the first few excited 
states accurate to thirty digits are very impressive and demonstrate the efficiency of the 
method. Certain remarks about the selection of the basis functions and a convergence 
discussion on the presented simple approximation scheme are also included in this paper. 

1. Introduction 

Almost all of the bound-state investigations of the systems encountered in quantum 
physics can be interpreted as eigenvalue problems of certain linear operators whose 
domains cover a Hilbert space. It is well known that, if only the non-relativistic case 
is under consideration, the Schrodinger operator characterises the system. For an 
atomic or molecular system, discrete and continuous spectra exist together and bound 
states have various accumulation points in or at the border of the continuous spectrum. 
The determination of such eigenvalues is a difficult problem, and almost all methods 
either fail or show weak convergence properties. However, the ground or low-lying 
states do not create such difficulties if they are sufficiently far from the starting point 
of the continuum. This statement is, of course, not general since it is true only if the 
operator is semibounded. 

On the other hand, some quantum mechanical problems in crystal physics or in 
solid state theory generally deal with systems which possess solely discrete spectra; 
for example, well potentials and anharmonic oscillators. However, although the 
non-existence of the continuous spectrum is an important simplification, there may be 
some adjacent eigenvalues, numerical evaluations of which result in serious problems. 
The discrete and continuous parts of the spectrum of a given linear operator have 
different uses in practical applications. Indeed, if we are interested in the discrete 
spectrum the determination of the spectral points is necessary since they give the 
energetic structure of the system in question. In the case of continuous spectra, however, 
the problem characterises a scattering or a collision phenomenon, and so perhaps only 
the endpoint of the continuous spectrum and density of the spectral points are of 
importance. Thus the determination of the wavefunction is more important. 

Now, if one desires to find the discrete spectrum of the Schrodinger operator of a 
given system, the conventional way is to convert this eigenvalue problem to a matrix 
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eigenvalue problem via the selection of a basis set which spans the domain of the 
operator. If the basis set employed in this procedure is orthonormal, the resulting 
matrix eigenvalue problem is then symmetric and unit-matrix weighted. Otherwise a 
generalised matrix eigenvalue problem is encountered. To evaluate the elements of 
the matrices in the matrix representation of the Schrodinger operator and the unit 
operator, it is necessary to perform certain integrals. Perturbational [ 1-31 and vari- 
ational methods may be recalled as examples. The solution of the matrix eigenvalue 
problem mentioned above depends completely on these integrals. The presence of 
integration in such methods causes two limitations. First, the trial functions have to 
be chosen in such a way that the integrals can be evaluated easily and, preferably, 
analytically. In many cases, this makes it impossible to use well defined basis functions 
that characterise the true behaviour of a system at the singular points of the differential 
operator. Second, there are serious problems due especially to the accumulation of 
errors when numerical integration techniques are tried. I t  should be noted that many 
methods, such as collocation and finite differences, seem to be integration-free; but, 
in fact, they do not remove the non-local behaviour, which is peculiar to integration 
in the solution technique. That is, such methods have a hidden integration character. 
Hence the establishment of an integration-free algorithm, which uses mostly local 
information, is of considerable importance in many circumstances. 

It is well known that dividing the general Schrodinger equation H 9  = E* by 
yields 

E = H q / *  

which is constant for each point in the domain of the wavefunction. Therefore, energy 
may be locally evaluated at any point in the domain if the exact wavefunction is known. 
Indeed, Bartlett [4] has pointed out that for an exact solution E is a constant whereas 
an approximate wavefunction or a trial function, qT, will lead to a local energy, say 
p, calculated from HqT/qT as a varying function of position. Bartlett used this 
property of local energy to test the goodness of a numerically calculated wavefunction 
for helium [SI. It is clear that the constancy of HYT/qT can be employed at least as 
a criterion of the excellence of the trial function. Frost er al [ 6 ]  have developed a 
least-squares method and made use of the criterion of constant energy to improve the 
original approximating function. Their approach, however, has a global nature. 

A very different strategy is developed here, however, where the constancy of HV/Y 
is directly used for the construction of a new algebraic method. Our approach employs 
the vanishing derivatives of the ratio Hq/* as the basic idea of the method. In other 
words, a truncated Taylor series expansion around an internal point of the domain 
should have zero coefficients, except for the first constant one. So this method is of 
a completely local character. 

In this paper we show how an integration-free method, the main outlines of which 
have been introduced by Demiralp [7], can be developed to solve linear eigenvalue 
problems. The formalism of the method is given in § 2. In § 3, generalised anharmonic 
oscillators are briefly reviewed and a novel trial function is constructed in such a way 
that it reflects the particular behaviour of the exact wavefunction. Subsections 3.1 and 
3.2 cover the particular cases of the quartic and sextic oscillators. Extremely accurate 
numerical results are presented in § 4 in the entire range of the anharmonicity constant. 
The last section includes a convergence discussion of the algorithm and some 
concluding remarks. 
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2. The Wronskian approach 

Let us consider the following eigenvalue problem: 

where 2 denotes a linear ordinary differential operator whose domain, 9(9), is a 
subspace of a Hilbert space, 2. We have assumed, without any loss of generality, that 
9 contains only one independent variable. Indeed, all conceptual features of the 
scheme remain unchanged when it is extended to the many-dimensional case. We also 
assume that 2 has only a discrete spectrum, in order to avoid the aforementioned 
difficulties of the continuous spectrum. 

Let us now choose a trial function, YT, for the approximate solution of (2.1): 

and consider the ratio 

I-L ( x )  = T ~ T ( x  )/ TAX ) (2.3) 

where x stands for the independent variable and the 4, are the elements of a basis set 
which spans the domain of the operator. If P T ( x )  were a true eigenfunction of 9, the 
ratio would be a constant equal to the corresponding eigenvalue on the entire interval 
of x. Otherwise, it is evident that p ( x )  is a function of x. The construction of a basis 
set such that {4,(x): j = 1,2 , .  . .} and {24,(x) u , ( x ) :  j = 1,2, . . .} satisfy the accom- 
panying boundary conditions of (2.1) is, however, possible in order to make p ( x )  
finite everywhere. Furthermore, since a constant function is infinitely differentiable 
and all derivatives are zero, we can impose the following ( N -  1) conditions on p ( x )  
by assuming that the 4, are infinitely differentiable: 

P k P ( X ) } , = , ,  = 0 Dk = dk /dxk  k = 1 , 2  , . . . ,  N-1. (2.4) 

This is equivalent to equating to zero the first ( N  - 1 )  derivatives of the Taylor expansion 
of p ( x )  at a specific point, xo .  That is, 

p ( x )  = p ( X o ) + O ( ( X - X o ) ’ ~ ’ )  (2.5) 

which means that p ( x )  is almost a constant function in a sub-interval centred at xo. 
The extra condition on TYT is due to the fact that if 2PT does not satisfy the boundary 
conditions then p ( x )  goes to infinity at the boundary points of the x interval. This 
is, of course, an undesired property since in this way the flatness of p ( x )  is affected 
in an important area. 

Now, if we differentiate both side of (2.3), 2 P T ( x )  = p ( x ) P T ( x ) ,  in conjunction 
with (2.2), up to ( N  - 1)th order 

Do= 1 k = l , 2 ,  . . . ,  N (2.7) 

and take into account the conditions expressed in (2.4), 
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from which we arrive at the generalised matrix eigenvalue problem: 
N 

( d k , - A B k j ) C , = o  k = l , 2 ,  . . . ,  N 
J = 1  

where the elements of the matrices d and 41 are defined as 

d ,  { D " - ' U , ( X ) ) x = x ,  

and 

Bkj { ~ " - ' ~ , ( X ) ) X = X ,  
respectively, and A 

A = P ( X 0 )  

represents the approximate eigenvalue in question. Therefore, we obtain 

d c = A 4 1 c  

in vector-matrix notation, where 
T 
8 =[c l ,  c 2 , .  . . 9 C N ] .  

( 2 . 9 )  

(2 .10)  

(2 .11)  

( 2 . 1 2 )  

(2 .13)  

(2 .14)  

41 and d are the Wronskian matrices of the set { 4 , ( x ) }  and the transformed set 
{uj(x)} respectively, so that this scheme may be called the 'Wronskian approach'. The 
generalised eigenvalue problem (2 .13)  may yield complex pairs of eigenvalues depend- 
ing on the xo value and the nature of 9 and { 4 j }  due to the non-symmetric structure 
of d and 41. We may conjecture, however, that it is possible to find certain x,, values 
for which a real A can be obtained. It is also possible to convert 41 into the identity 
matrix by a convenient selection of the 4j.  These arguments will become clearer in 
the following sections when the method is applied to solve specific problems. Above 
all, if the 4j form a complete set one can expect that the scheme converges as N goes 
to infinity. However, we leave the convergence proof to future studies. 

3. Generalised anharmonic oscillators 

The quantum mechanical description of generalised anharmonic oscillators in the 
one-dimensional case is given by the Schrodinger equation 

H*(x) = E * ( x )  x E (-00, 00) ( 3 . 1 )  
H = -d2/dx2 + x 2  + px2'" m = 2 , 3 , .  . . p 2 0  E = E ( m ,  p )  ( 3 . 2 )  

with the boundary condition 

x-*m lim *(x)=O ( 3 . 3 )  

where " ( x ) ,  E and p are the wavefunction, energy eigenvalue and anharmonicity 
constant, respectively. With the introduction of a scaling parameter, U, and the 
transformation of the variable x to u'"x, the equation becomes 

[-d2/dx2+ v 2 x 2 + ( 1  - U ' " + - ' ) X ~ " ' ] * ( X )  = uE*(x)  ( 3 . 4 )  

O s u a l  (3 .5)  

where the scaling parameter is defined by 
U = ( 1  + p ) - l l ( m + l )  

in order to obtain a bounded potential for all regimes of the anharmonicity constant. 
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A review of the anharmonic oscillators problem is outside the scope of this work. 
Our aim is merely to test the Wronskian approach. We may, however, outline the 
main approaches in three groups: perturbative methods [8-111 which emphasise the 
resummation of the divergent Rayleigh-Schrodinger series; non-perturbative methods 
which try to obtain the best approximate wavefunction by variational techniques 
[ 12-14], iterative techniques [15]  or by a characteristic function algorithm [16-181; 
and the method of the Hill determinant [19-211. As is well known, all these methods 
are equally useful depending on their particular limitations. 

Let us now examine the mathematical structure of the Hamiltonian (3.2). First, H 
is positive definite as long as p is non-negative. The positive definiteness and the 
self-adjointness of the operator implies that it possesses a real positive and discrete 
spectrum. It is well known that the spectral points of the harmonic oscillator are 
equally spaced, whereas in the case of the anharmonic oscillators discussed here, as 
the state number and the parameter p increase, the difference between any two 
consecutive eigenlevels is broadened. That is, none of the eigenvalues of H are close 
to each other, so the spectrum is numerically well isolated. Another property of H is 
that the non-existence of odd terms in x makes it possible to separate the set of 
eigenlevels into two subsets which contain even and odd functions of x, respectively, 
i.e. symmetric and antisymmetric levels. 

On the other hand, the wavefunction is square integrable over the entire real axis 
of the x-complex plane due to the discrete character of the spectrum and the accompany- 
ing boundary conditions (3.3) of the problem. Thus the approximate wavefunction 
(in other words the trial function, 'PT) must decay exponentially when x goes to infinity, 
in order to compensate the irregular singular behaviour of H at infinity. The structure 
of the argument of this exponential factor depends on the anharmonicity constant /3 
and the number m. It is -x2/2 for the harmonic oscillator when /3 = 0. However, a 
function of the absolute value of x, the dominant term of which is proportional to lxI3 
[22], should be used in the case of the quartic oscillator where m = 2. The determination 
of the exponential factor can be accomplished by making use of the condition 

lim H'PT/'PT= constant. 
X ' Z T  

(3.6) 

This condition is automatically fulfilled if the exact wavefunction is known. However, 
when we have an approximate wavefunction, YT, the necessary and sufficient condition 
for H'PT to be contained in the space to which 'PT belongs is (3.6). Then, H'PT is 
also in the space of the square integrable functions, L 2 .  It is evident that the exact 
wavefunction satisfies the relation 

H"'P/'P = E" H"QE L2 H o =  1 n = 0, 1 , .  . . (3.7) 

for the entire interval of x, x E (-CO, CO). Hence, enforcing the trial function to satisfy 
the conditions at the singular points of H 

lim H"'PT/'PT = constant n =  1 , 2 , .  . . (3.8) 

is of considerable importance. Since there is no singularity in any finite subregion of 
the x-complex plane, the Frobenius theory of ordinary differential equations dictates 
that two linearly independent solutions of (3.4) can be expanded into Maclaurin series, 
both of which are multiplied by an exponential function. Such solutions coverge in 
all circles centred at the origin whose radii are finite. On the contrary, if we wish to 
find solutions of (3.4) which are valid for large values of x, we then seek solutions in 

X - f m  
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the form of infinite series with variable l / x .  These serial expansions in inverse powers 
of x are divergent but asymptotic due to the irregular singularity of 'the point at 
infinity'. Therefore, it seems almost impossible to obtain an analytic continuation by 
appropriate manipulations on the power series. 

All these discussions will be taken into consideration for the selection of the trial 
function. It is noteworthy that the integration-free character of the Wronskian approach 
enables us to employ complicated basis functions without any problem. First, let us 
consider the coordinate transformation 

5 = (1  + axZ)-I'P 5 E  [O, 11. (3.9) 

There are three reasons for introducing a new variable 5. Firstly, since 5 is an even 
function of x we can deal only with the symmetric states of H. This specification, in 
fact, does not create any loss of generality, because a similar procedure holds to 
determine the antisymmetric states of H when vl(x) is replaced by x"(x) in (3.4). 
Secondly, if one is interested in the symmetric states of (3.4), the expansion of the 
wavefunction at the origin of the x axis is expressible as 

v(x )=1+c*x*+c4x4+  . . . .  (3.10) 

However, imitating this behaviour of the exact wavefunction is extremely difficult due 
to the dependence on the absolute value of x in the argument of the necessary 
exponential function mentioned above. Making use of 5, an expansion in terms of x 
for the approximate wavefunction of the form (3.10) can be obtained provided that 

for even m 
for odd m. 

(3.11) 

Thirdly, the insertion of an arbitrary parameter, a, yields a flexibility to accelerate the 
convergence of the algorithm. 

Therefore the problem of determining the symmetric eigenvalues of (3.4) is con- 
verted to 

H m W 5 )  = i p 2 v E ( m ,  P ) W O  (3.12) 

H, = (3.13) 

V(5) = f p * [ ( p  - l )v2/a + (5- - 1)"( 1 - v " + ' ) / a " ]  (3.14) 

by the change of variable from x to 5. 
With the general outline of constructing the basis functions in  perspective, we can 

now choose a trial function of the form 

y T ( 6 )  = f ( 6 )  exp[g(6)1 (3.15) 

f(5) = c A ( - P / 4 - ' ( 5 -  fi = 1 (3.16) 

where the A are the unknown coefficients in the linear combination and g(x) is the 
function which is to be determined by utilising the condition expressed in (3.6). 
Consequently, it is shown that the trial function reflects the asymptotic behaviour of 
the exact wavefunction at infinity. Furthermore, if we consider the limiting case of 5, 
when 5 goes to one or, equivalently, when x goes to zero 

[ - 1 + ( - a / p ) x ' + .  . .  x 2 - ( - p / a ) ( ~ - l ) + . . .  (3.17) 

then 'PT can be regularly expanded for sufficiently small values of x similar to (3.10). 

- 1)t"" d*/d.$'+ a [ (  p + 1)(tP - 1) + : ~ ] 5 ~ + '  d /d5+ V(5)  

X 

J - 1  
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3.1. The quartic oscillator 

The most studied system of general anharmonic oscillators is the quartic anharmonic 
oscillator. In this case, for which m = 2 and  p = 2, we have 

(3.18) 

(3.19) 

(3.20) 

From the aforementioned considerations, the trial function may be written in the form 

q T ( 5 )  =f([) e ~ p ( - $ a ~ t - ~ +  a,5-' +a,  In 5 )  a,>O (3.21) 

from which it follows that 

+ [ 2 a 3 a , a 2 +  a3ai  - 2 t i  - v') + a ~ ' ] [ - ~ +  h 3 u 2 (  1 - U , ) [ - ' } .  (3.22) 

The condition (3.6) evidently implies 

a i a ; - ( l - v ~ ) = O  (3.23) 

2a3 2(1- v 3 ) l  (3.24) 

a , -1=0 (3.25) 

for the determination of the parameters, a,, a, and a,. Thus the problem is altered to 

Tf(0 = vE(2 ,  P ) f ( 5 )  (3.26) 

- (1 - v.;) + a v 2  = o 

where the operator T is 

T = at4(  t2 - 1) d'/d['+ a[5t5 - 2 ~ 1 5 ~  - 4t3  + 2( U ,  + ~ 2 ) 5 ~ - 2 ~ 2 ]  d /d[  

+ a [ 3 t 4 - 3 a , t 3 +  ( a :  - 2 ) t 2 + ( 2 a I  + a 2 ) [ -  a ; ] .  (3.27) 

It is not difficult to prove that the ratio H"'PT/'P\E, for n = 2 , 3 , .  . . , tends to a constant 
as 1x1 +CO or 5 = 0 when the requirement for the constancy of H'€'T/'PT is realised. 
That is, the conditions expressed in (3.8) are automatically fulfilled. 

We can now construct the, Wronskian matrices in order to evaluate the approximate 
eigenvalues of the problem. From (3.16) we have 

(3.28) 

and with the definitions (2.10) and (2.11) we may derive the elements of the matrices 
in the forms 

9&, = ( -$a  I"'[ 5 - I / (  k - I ) !  = &, (3.29) 
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and 
d ,  = ( - f a ) k - J I D k - ' T ( € - l ) ' - ' ] s = I / ( k - l ) !  

= & a 5 [ ( j  - l ) ( j  -2) + 5 ( j  - 1) +3]8k,,+4 
-icy4[6(j- l ) ( j - 2 ) +  (25 - 2 a , ) ( j -  1)+3(4-  ul) ]&, ,+3  

+$cy3[14(j- l ) ( j - 2 ) + 2 ( 2 3 - 4 a i ) ( j -  l ) + ( a l  -3 ) ( a ,  -6) -21Sk,,T2 
-;a2[16(j - l ) ( j  -2) +2(  19-5a,  + u J ( J -  1) 

+ (2al+ 1 )(ai - 4 ) +  12]8k,,+l 
+ .[9(j- 1 ) ( j - 2 )  + (13-4a1+4a2)(j- 1) + (1 - 0 ,  + a>)]SA,r 

- 2( 2J - 3)( j - 1 ) tih,, - I . (3.30) 

The matrix 1 so defined reduces to the identity matrix. The harmonic oscillator is a 
special case of the problem. Equation (3.23) implies that the parameter cy is zero when 
p = 0 or v = 1, where 

(3.31) 

It should also be observed that the spectrum of d is equal to the well known spectrum 
of the harmonic oscillator if 

.(az-a,) = 1. (3.32) 
This may be taken into account as an extra condition for the estimation of cy. Therefore, 
the derivations of the parameters result in 

d ,  = [ 4 a ( a 2 -  a l ) ( j  - 1)+ .(a2- ~ ~ ) ] 8 ~ , ,  -2(2J - 3 ) ( j  - 1')8+,. 

cy = (1 - v3)/[1 + ( I  - y 2 ) 1 / 2 1 2  (3.33) 

a ,  = (1 - v2)1'2/(Y (3.34) 

a,=(1-v3)"2/cy31?. (3.35) 

3.2. The sextic oscillator 

The problem of the sextic oscillator, where m =3 ,  may be worked out in a similar 
fashion. In this case the trial function is of the form 

(3.36) qr(5) =f(o exp[-ta,t- '(&' - 1) + a. In €1 
where 

5 = (1 + a x ? ) - '  (3.37) 
X 

f(5) = c & ( - 1 / 4 - l ( 5 -  (3.38) 
1-1 

The modified eigenvalue problem can be derived as 

V ( € )  = vE(3, Plf (5)  (3.39) 
where 
T = 4cy (5 - l)t3 d2/d5' + 2a[4( a, + 1 ) t 3  - ( 4 ~ ~  + 2a, + 3 ) t 2  + 4a l  5 - 2a ,] d/d[ 

+2cya,[2(a,1+ 115'- ( 2 a , +  2a,  + 1 ) 5 +  2a,]  (3.40) 
(3.41) = ( 1 + p )p4. 

By our Wronskian approach the corresponding matrix eigenvalue problem is 

df= vE(3, P)f  (3.42) 

fT=E1,f*f3,...1 (3.43) 
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where the elements of the matrix are defined by 
d, = 4 a 3 [ ( j  - l ) ( j  -2) + 2( U, + 1 ) ( j  - 1 ) + a,( a, + 1 )]Sk,,+Z 

-2a2[6(j-  l ) ( j - 2 ) + ( 8 a 0 - 2 a , + 9 ) ( j -  1 ) + ~ , ( 2 a 0 - 2 ~ , + 3 ) ] 6 , , , , ,  

+ [ 1 2 a ( j  - l ) (J  -2 )+4(3a  + l ) ( j  - 1) + 1]&, 
- 2(2j - 3)( j - 1 I . (3.44) 

The determination of the parameters a, a, and a,  is similar to that of the quartic 
oscillator case: 

a = 2(1- v y / [ v 2 + 3 ( 1  - v4)1/21 

a, = (1 - v4)l’2/a2. 

(3.45) 

a, = 1/2a (3.46) 
(3.47) 

As can be readily shown, the extension of the method to the octic oscillator and other 
systems of this kind is straightforward. 

4. Numerical results 

The truncated matrix eigenvalue problem 
N 1 - P ) 6 k J l f ;  = m = 2 , 3  k = 1 , 2  ) . . . ,  N (4.1) 

, = I  

where N is the size of truncation, is solved for illustrative purposes. Since the matrix 
d is non-symmetric certain numerical difficulties may be expected. However, for both 
m = 2 and m = 3 the transpose of the Wronkian matrix, dT, is of an upper Hessenberg 
form and of a banded structure. This simpler structure enables us to determine isolated 
eigenvalues accurately. Hence the QR algorithm for real Hessenberg matrices and the 
related package routines are employed [23]. We used quadruple precision arithmetic 
on a VAX-11/780 computer (34 digits) by truncating the results to 30 significant digits. 

In tables 1-6 we report the ground-state and the first five symmetric excited-state 
energy levels of the quartic anharmonic oscillator as a function of the anharmonicity 
constant, P. It is apparent that the Wronskian approach yields the most accurate 
numerical results for the ground-state eigenvalues. A slight slowing down of conver- 
gence is observed as the state number, n, increases. For very high state numbers it is 

Table 1. Ground-state energy eigenvalues of the quartic anharmonic oscillator as a function 
of the anharmonicity constant. 

N Eo(2, P )  
- 

P 

0.00001 6 1.00000749986875520282341105100 
0.0001 8 1.00007498688020011112283415530 
0.001 12 1.00074869267318569953848500930 
0.01 18 1.00737367208138246053384390598 
0.1 29 1.06528550954371768885709162879 
1 47 1.39235164153029185565750787661 
IO 48 2.44917407211838691826879390619 
100 47 4.99941754513758782929463203735 
1000 47 10.6397887113280460636220426694 
40000 48 36.274458 1337368354703763826785 
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Table 2. n = 2 excited-state energy eigenvalues of the quartic anharmonic oscillator as a 
function of the anharmonicity constant. 

P N E2(2, P )  

0.00001 
0.0001 
0.001 
0.01 
0.1 
1 
10 
100 
1000 
40000 

8 
10 
14 
20 
33 
57 
55 
54 
52 
52 

5.00009749615656369945532151381 
5.00097461593838559937785112958 
5.00971187278810748703699224736 
5.09393913274230922537730488023 
5.747 959 268 833 563 304 733 503 118 48 
8.655049957759309688 11653945738 

16.6359214924137577833619179322 
34.873984261994777546412103 5612 
74.6814042001648132608522697991 

255.017677289573984846933213430 

Table 3. n = 4 excited-state energy eigenvalues of the quartic anharmonic oscillator as a 
function of the anharmonicity constant. 

0.00001 
0.0001 
0.001 
0.01 
0.1 
1 
10 
100 
1000 
40000 

10 
12 
16 
24 
39 
61 
58 
58 
56 
57 
- 

9.000 307 479 696 423 799 458 683 180 87 
9.00307297204461255029531189234 
9.03054956607471081538727951165 
9.28947981631188566821916117362 

11.098 595 622 633 043 01 1 086 458 749 3 
18.057 557436303252 8947712396465 
35.8851712222538737122812690982 
75.8770040286697241808400119029 

162.802 374 196 975 230 178 579 71 1 889 
556.200474630523658811864176747 

Table 4. n = 6 excited-state energy eigenvalues of the quartic anharmonic oscillator as a 
function of the anharmonicity constant. 

P hi 

0.00001 
0.0001 
0.001 
0.01 
0.1 
1 
10 
100 
1000 
40000 

11  
13 
18 
27 
43 
65 
64 
60 
62 
62 

Ee(2, P 1 

13.000637440292271633 7396401305 
13.0063690391227327542576124199 
13.063 163 5776784842765593222201 
13.586715 8015895900122761824546 
16.9547946861441513376926165088 
28.835338459504248840133635 7155 
58.241298739753240285 1042176544 

123.640697626678167674110965464 
265.519 951 678 280012 371 053 662 368 
907.329749584390178419610048216 
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Table 5. n = 8 excited-state energy eigenvalues of the quartic anharmonic oscillator as  a 
function of the anharmonicity constant. 

P N 

0.00001 
0.0001 
0.001 
0.01 
0.1 
1 
I O  
100 
1000 
40000 

12 
15 
20 
30 
47 
69 
69 
65 
67 
67 

17.001087367750291530519915 1999 
17.010861803328668215 8961354641 
17.1074577926534729419799765127 
17.9795105837112184301777564069 
23.229 552 179 939 289 070 647 087 4343 
40.690 386 082 106 444 725 278 931 4816 
83.0038670375852900204307960934 

176.628655957714353603604728193 
379.511311 178728667693 290769435 

1297.030657 027 216 185 205 102 512 01 

Table 6. n = 10 excited-state energy eigenvalues of the quartic anharmonic oscillator as  a 
function of the anharmonicity constant.  

0.00001 
0.0001 
0.001 
0.01 
0.1 
1 
10 
100 
1000 
40000 

14 
16 
21 
33 
52 
72 
72 
70 
71 
72 

21.0016572518789152147442309504 
21.016550253042501755118 1515730 
21.163 3381057038205341724410607 
22.4626056421661578127162214995 
29.8665252346712780183652389140 
53.449 102 139 665 264 600 831 506 4598 

109.772570864332974973673879837 
233.966225876235944863913218793 
502.886 399 284 715 911 615 348 140903 

1718.83443588707549217835841130 

necessary to provide large N .  However, for all values of p in the first six states, it is 
shown that the maximum size of truncation is 72. The truncation size, for which the 
desired accuracy is obtained, is also included in the tables. The accuracy of the results, 
which are in excellent agreement, especially with those of Banerjee [20], is checked 
in several ways and the maximum uncertainty in the tabulated eigenvalues is *l in 
the last significant figure. 

Numerical results for the sextic oscillator are similarly presented in tables 7-10. 
Results are given only for the first four states and only for four p values in order not 

Table 7. Ground-state energy eigenvalues of the sextic anharmonic oscillator as  a function 
of the anharmonicity constant. 

0.00001 37 1.00001874727074085150126908599 
10 83 2.205723269595632351009973387 17 
1000 80 6.49235013232967155054955784532 
40000 SO 16.211718264749243619248517 5559 
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Table 8. n = 2 excited-state energy eigenvalues of the sextic anharmonic oscillator as a 
function of the anharmonicity constant. 

0.00001 40 
10 86 16.641218 1082510801736590256626 
1000 86 51.1824801063056908846930289215 
40000 87 128.376742015 189214870771197740 

5.000 468 519 726 976 688 596 974 561 75 

Table 9. n = 4 excited-state energy eigenvalues of the sextic anharmonic oscillator as a 
function of the anharmonicity constant. 

0.00001 42 
10 93 39.2893306573703559911281343607 
1000 94 122.321705320204002373196508244 
40000 95 307.169 772 116 720 722 853 603 759 312 

9.002 415 883 909 077 122 103 173 565 91 

Table 10. n = 6 excited-state energy eigenvalues of the sextic anharmonic oscillator as a 
function of the anharmonicity constant. 

P N E.5(3, P )  

0.00001 45 
10 102 
1000 103 21 1.770 856 103 435 033 789 700 485 021 
40000 105 532.031545974229935494398970587 

13.007 052 770 760 179 284 606 487 1390 
67.698 071 647 819 192 862 730 726 1946 

Table 11. Convergence rate of successive approximations as a function of the truncation 
order and the comparison of the results for the ground-state energy of the quartic oscillator. 

N Energy ( p  =0.1) 

5 1.065 285 585 
10 
15 1.0652855095437176893 
20 1.065285509543 717688857099 
27 1.06528550954371768885709162880 
28 1.065 285 509 543 717 688 857 091 628 79 
29 1.06528550954371768885709162879 

Banerjee 
Marziani 

1.065 285 509 543 81 1 

1.065 285 509 543 72 
1.065 285 509 543 717 688 857 09 
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Table 12. Convergence rate of successive approximations as  a function of the truncation 
order and  the comparison of the results for the ground-state energy of the quartic oscillator. 

N Energy ( p  = 1 )  

5 

I5 
25 
35 
41 
42 
43 
44 
45 
46 
47 
48 

1.392 359 
1.392 351 641 530 275 
1.392351641530291855696 
1.392351641530291855657507652 
1.392351641 53029185565750787663 
1.392351641 530291 85565750787654 
1.392351 64153029185565750787658 
1.39235164153029185565750787660 
1.39235164153029185565750787659 
1.39235164153029185565750787661 
1.39235164153029185565750787661 
1.39235164153029185565750787661 

Banerjee 
Marziani 1.392 351 641 53 

1.392 351 641 530 29 

Table 13. Convergence rate of successive approximations as  a function of the truncation 
order and  the comparison of the results for the ground-state energy of the quartic oscillator. 

N Energy Cp = 40 000) 

5 
15  
25 
35 
44 
45 
46 
47 
48 

36.275 
36.274 458 133 739 
36.274 458 133 736 835 468 
36.274458 133736835470376378 
36.274458133 736835470376382681 
36.274 458 133 736 835 470 376 382 679 
36.274458 133 7368354703763826786 
36.274458 133 7368354703763826785 
36.274458 1337368354703763826785 

Banerjee 
Marziani - 

36.274 358 133 736 8 

to overfill the content of the paper with tabular material. As is shown, the acceleration 
of the convergence is slow relative to the case of the quartic oscillator. 

In tables 11-14, some results of Banerjee [20] and Marziani [ l l ]  are given explicitly 
for the comparison of our successive approximations. 

5. Convergence discussion and concluding remarks 

Let us consider the second-order formally self-adjoint linear differential operator, H: 

where the potential function, V(x) ,  is analytic, and recall the following quantities 
which were introduced in § 2 :  

H = -d'/dx'-t V( X )  (5.1) 

F ( X )  = If*(x)/*(x) (5.2) 
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Table 14. Convergence rate of successive approximations as a function of the truncation 
order and the comparison of the results for the ground-state energy of the sextic oscillator. 

N Energy ( p  = 40 000) 

40 
50 
60 
65 
70 
75 
80 
85 

Banerjee 
Marziani 

16.211 718264749243826 
16.211 718264749243619150 
16.211718264749243619248486 
16.211718264749243619248518 
16.211 718 264 749 243 619 248 517 588 
16.211 718 264 749 243 619 248 517 553 
16.211 718 264 749 243 619 248 517 5559 
16.211 718264749243619248 5175559 

16.211 718 2647492 
- 

{ D k * ( x ) } y = . , = o  k = l , 2 ,  . . . ,  N 

{D"*(x)} ,=,= 0 k = l , 2 ,  . . . ,  N 

p ( x )  = P ( x o ) + O ( ( x - x o ) N + ' ) .  

Differentiating H 2 Y ( x )  we find that 

D k H ' 9 ( x )  = - D k ' 2 H P ( ~ ) +  

which implies 

{ D k H 2 Y ( x ) } x = q l  = 0 k = 1 , 2  , . . . ,  N - 2 .  

In general, we obtain the relation 

{ D k H " " T ( ~ ) } , = y ~ =  0 k = 1 , 2  , . . . ,  N - 2 m .  

If we now define the more general ratio 

p $ ( ~ )  = H'+'* ( x ) /  HI*& (x) H ' z  1 

from which it follows that 

p ' i ' (  x ) = p %'( x o )  + O( ( x  - x o )  ' - ' -*' 1 

( 5 . 3 )  

(5.4) 

( 5 . 5 )  

( 5 . 6 )  

( 5 . 7 )  

( 5 . 8 )  

(5.9) 

(5.10) 

where N denotes the order of the Wronskian approach. This means that the functional 
p:<,' is almost constant in an appropriate neighbourhood of the point where x = xo; in 
other words, it is flattened around x o .  However, the capability of flattening decreases 
as j increases. 

Since the Wronskian approach imposes only conditions about the closedness of 
qh, Y>% E 9(%!), and of If*%, H9, '  E 9 ( X ) ,  then f o r j >  1 p*'6' may go to infinity at 
the boundary points of the interval if an operator more general than ( 5 . 1 )  is under 
consideration. This adversely afiects the flattening capability of the method. However, 
in a sufficiently small vicinity of the point at x = xo, the desired flattening property of 
px' can be expected. The range of this vicinity depends completely on the structure 
of the basis functions and the Hamiltonian. 
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On the other hand, Y N  can be written as a linear combination of the true eigen- 
functions since it is contained in the domain of the operator; that is, 

where Fk stands for the kth true eigenfunction in an increasing eigenvalue ordering 
of eigenpairs. The existence of a residual function, R N ,  permits us to isolate the 
expansion in terms of Fk from the divergent nature which may appear under the action 
of various powers of H to qN.  Furthermore, it is assumed that the derivatives of R N  
u p  to the N t h  order vanish in the vicinity of the point, x, .  Therefore, the infinite sum 
in (5.11) may be assumed to globally converge under the action of H”, where 2 M  is 
the nearest integer number to N. It is evident that H M F k  = A Y F A .  So the self- 
adjointness and the positive definiteness of H imply 

a i N ’ =  b L N i / A y  { b:“’} E I ,  (5.12) 

where 1, denotes the space of all infinite sequences of b;” for which 

(5.13) 

since 

{a:”}E I ,  1:“ ’Ay} E I , .  (5.14) 

Therefore 
iT 

!V ,v ( x  ) = ab“’ F,( x )  + A 0 2 b :” ) (  A,/ A ) FA ( x )  + R,% ( x )  (5.15) 
k = l  

is obtained. Since 

( A O / A k ) <  1 (5.16) 

taking the limit of (5.15) as N + m  we have 

q = ( x )  = ab”F,,(x)+ R , ( x ) .  (5.17) 

Because of the local character of R , ,  which vanishes around x,,, we may write 

lim q N ( x ) a  F O ( x )  x E [ X g -  8, x,+ 81 (5.18) 
N - x  

for sufficiently small values of 6. This property holds only if the coefficients, a:”, 
remain bounded when N tends to infinity. The boundedness of a i N )  can be shown if 
we know that the true eigenfunctions have convergent expansions in terms of the 
selected basis functions, {4,} .  The existence of R N ( x )  has no bad influence on these 
discussions. However, we can even get rid of it by imposing closedness conditions 
under certain powers of U at the boundary points of the interval. 

For generalised anharmonic oscillators, there is no such residual function due to 
the exponential factor in the structure of the basis functions. Therefore, as a conclusion, 
we suggest that q w ( x )  converges to a ground-state eigenfunction, F , ( x ) ,  if the basis 
functions are properly chosen. The convergence of the excited modes, on the other 
hand, seems to be provable by using certain properties of the matrix algebra. We shall 
not, however, deal with this subject in this paper. The convergence of T I r , ( x )  to F,(x)  
implies that the most accurate values can be obtained for the ground states. Actually, 
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it is apparent from numerical results presented in 5 4 that the same accuracy as those 
of the ground states could be obtained for higher modes by increasing the order of 
the Wronskian approach. 

The transformed Hamiltonian (3.13) has three singular points located at 5 = 0, 1 
and infinity. The irregular singularity at infinity and the additional singular point at 
5=-1,  for even m, are out of the 5 interval. However, they may influence the 
convergence of the method. The singularity at t = O  is irregular and is taken care of 
by the exponential factor in the basis functions. The regular singular point 5 = 1, from 
the transformation (3.9), is the image of the origin of the x interval. As a result of 
these remarks a Frobenius series expansion for the solution of the problem at xo = 0 
or, equivalently, to = 1 converges in an open unit ball centred at 5 = 1 .  However, if 
the calculation point xo differs from zero then to is smaller than one and the correspond- 
ing expansion at this point has a convergence radius which is less than unity. If to is 
very close to zero, i.e. when xo -$ a, a dramatic slowing down of convergence is expected 
due to the irregularity of the point at 5 = 0. Since the Wronskian approach is a pointwise 
approximation, such discussions are of considerable importance, hence we use to = 1 
as a calculation point at which the Frobenius expansion has a maximum radius of 
convergence. Although they are not quoted here, numerical results obtained for various 
values of 5 show that there is a notable loss of convergence. 

On the other hand, any possible extra singularity in the pontential, for example a 
jump discontinuity, creates additional difficulties. This, of course, changes the conver- 
gence character of the exact eigenfunctions. To take care of this kind of problem 
multipoint expansions and their matching are needed. However, we are not going to 
consider such problems and assiime analyticity of V (  x)  everywhere as previously stated. 

Another interesting aspect in general anharmonic oscillators is the selection of the 
flexible parameter, CY. Even though it looks as if this kind of selection of CY is valid 
for the nearly harmonic regime of the anharmonicity constant, numerical evaluations 
show that CY is very effective in the entire range of p. 

Consequently, the Wronskian approach yields very encouraging numerical results. 
The most important advantage is its simplicity. Further detailed investigation of the 
method to complete the proof of convergence, in the sense of functional analytical 
concepts, and to generalise to the multivariable case is under consideration. 
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